

Ecole Polytechnique Fédérale de Lausanne EPFL

China Hardware Innovation Camp

2nd milestone – May 12015

Viel Reise

Introduction

The Team

	НОМЕ	TEAM PROJECT	CONTACT	English Français Deutsch
The Team				中国
Florian Maushart EPFL	Xingyu Xu EPFL	Florian Lemarignier EPFL	Philippe Gannagé HEC	Arthur Desmet ECAL

Structure

- Business

- Industrial design/mechanical design
- Material
- Software/firmware
- Electronics
- Take-away

What is Fimi ?

Feed me = Fimi

- f is coming from the CHIC project
- **f** is a smart baby bottle
 - is a small connected device

solves the needs of the consumers and the problems they have

2nd milestone

Problem

Solution

Market

2nd milestone

<u> Topic: Baby bottle & safety - Field Study</u>

Problem

Preparing a baby bottle is long and painful

(J

It is hard to know if the temperature is alright

Solution

It is hard to know how much the baby is drinking

Parents don't have a track of the baby's consumption

Market

2nd milestone

Problem

Market

Solution A smart baby bottle that:

- Is made out of break-resistant material
 & bio compatible
- Monitor Temperature and display it
- Measure volume & time of drinking
- Is resistant to heating and cooling
- Good design (doesn't roll, funny for kids, easy to hold)

—	
• —	
C	
•	
4	
\bullet	J

A mobile application that:

- Shows all sensor information of the bottle
- Gives table/profile/overview statistics
- Gives access to comparison database
 -> warning for bad values
- Makes a sound when the temperature is right
- Set the goal temperature for milk
- Chat service
- Practical advices & tricks

2nd milestone

Found via field study, questionnaires, etc... (more details on the blog)

Business

Solution

OLE POLYTECHNIOUE ÉDÉRALE DE LAUSANNE

- **Must:** Parents
- **Should:** Brothers, Sisters, Day nursery

<u>May:</u> Grand parents, nurses Target market « Where ? »

- Channel « How ? »
- Own brand, recurrent revenues
- Partners
- (P) Website

Price « How much? »

- - Cost production: 35.-Cost production: 10.-

Price: 99.- (17,5% net margin) 🗸

> Ok for the people

Two main parts :

The bottle

Main requirements :

Easy to wash and to fill \rightarrow Wide opening/ avoid sharp angles

Watertight \rightarrow screw based on the Philips model

Nipple \rightarrow ring adapted to Philips nipples

2nd milestone

Thermal \rightarrow insulating enough to keep the milk hot during the feeding but not too much to be able to cool the milk down.

Junction with the device

O Clips: can be hard to remove, usually not beautiful

Bayonet style (like on some light bubbles) \rightarrow small features that go out on the sides of the bottle : potentially dangerous for the baby and inconvenient

What we need to implement

PCB (circle of diameter 62mm)

Load cell (9x6x45mm)

IR thermo sensor

Bluetooth button

2nd milestone

Battery(20x7x30mm)

Micro USB plug

On/off button

Desian

How we tried to implement them?

Front view

Rear view

INNOVATION CAMP | 2015 (N°)

How we tried to implement them?

Top part + Thermo sensor

2nd milestone

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Bottom part +load cell +battery

How we tried to implement them?

Bottom part with PCB

PCB +Load cell +battery

$\Delta \mathbf{I} \Delta$ Estimated weight $\approx 125 \text{ g}$

What can be improved?

- \bullet battery and PCB close to each other \rightarrow might heat up
- heat can influence the load cell
- device is not watertight

Prototype: 3D printing

Material -> Verowhite(ABS like)

Manufacturing -> MJM technology

Prototype: mechanical property

Material	Young's Modulus(MPa)	Yield strength(MPa)	Tensile strength(MPa)
Verowhite	446	13.6	35.3

Mass production: Injection molding

Material -> Polypropylene

Material	Price CHF/Kg	Impact strength (KJ/m2)	Maximum service temperature	Transparency	Weak alkalis
PP	1.5-1.65	71.6-200	104-124/∘ C	Translucent	Excellent

Manufacturing -> Injection molding

2nd milestone

Infrared properties on Verowhite & Polypropylene

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 2nd milestone

INNOVATION CAMP | 2015 (N°)

Proposition: Double wall structure for insulating structure

- Insulating baby bottle without influencing its heating and cooling
- Not necessarily expensive and difficultly manufactured
- The thickness can be 2mm in prototype
- Can be revealed by injection molding

First Shematics

New schematics: spot the difference!

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

MCU and weight cell

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

2nd milestone

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Bluetooth Low Energy (4.0)

HM11-BLE is used on a « Grove » board that's adapted to Arduino

only 13.5 x 18.5 x 2.9mm

tests needed, but code available

ÉCOLE POLYTECHNIQUE Fédérale de lausanne

Flash Memory

New 3.3V design reduces components needed

Memory structure:

timestamp - data1 - data2 - ... - end

PCB Layout

Iteration with design / mechanics to assure that everything fits

3D components added and functional grouping on PCB

Routing

Well... autoroute is not the way

Regrouping needed to better expose IC connectors

4-layer layout?

Idea: Start measurements after button has been pushed

Measure and write in buffer

Read and write a « write protection » : If active can not be overwritten and indicates to synchronise via Bluetooth

App design:

Tutorial Direct Measurement (tare, temperature) Statistics Messages (?) Forum (?)

Firmware based on Arduino libraries

Can be flashed via ICSP

Debugging with FTDI of Arduino board

What have we learned and where do we need help

How to communicate in a multi-cultural group

How to ask questions

How to collaborate between engineer, design & business

That PCB is difficult

How to do design iterrations

To design the bluetooth protocol

Program the mobile application

PCB check

Specialize 3D design for the double wall

Sponsors and partners

Unil

UNIL | Université de Lausanne

écal

